Configuration Management and Test

Implementing Configuration Management
for Software Testing Projects®

Steve Boycan
Securities Industry Automation Corporation

Drz. Yuri Chernak
Valley Forge Consulting, Ine.

This case study presents the Application Scripting Group’s experience in inplementing the configuration management (CM)
process for critical software testing projects. The article describes the company’s test process management objectives and how
implementing the CNM process helped testers better achieve them. The anthors define the types and purposes of the test process
milestones and the corresponding types of test model baselines, and describe the CM process implementation with the Rational

ClearCase tool.

his case study discusses software test-

ing of use-case-driven projects by the
Application Scripting Group (ASG) of
the Securities Industry Automation
Corporation (SIAC). This SIAC group is
responsible for testing highly critical sys-
tems used for equity trading at the New
York Stock Exchange (NYSE). The high
criticality of SIAC systems requires that
the software testing process be well
planned and well managed. In addition, an
important management objective is the
continuous improvement of test process
performance that focuses on test effort
estimation, completeness of test designs
before test execution, traceability of test
designs to use cases, testing effectiveness
in finding defects, and test artifact main-
tainability and reusability from one project
cycle to another. This means that when a
given project has ended, a project team
has to analyze the actual process perform-
ance, perform causal analysis of process
deficiencies, and identify improvements
for the next project cycle.

To analyze test process performance,
testers typically review and analyze the
test process artifacts produced and used
during a project cycle. However, these
testing artifacts, along with their related
use cases, evolve during a project cycle
and can frequently have multiple versions
by project end. Hence, analysis of the
process performance from different per-
spectives requires that testers know
exactly which versions of artifacts they
used for different tasks. For example, to
analyze why the test effort estimates were
not sufficiently accurate, testers need the
initial versions of use cases, test analysis,
and test design specifications they used as
a basis for the effort estimation. In con-

© Copyright 2005 by the Securities Industry Automation

Corporation (SIAC). All rights reserved. Except as per-
mitted under the United States Copyright Act of 1976,
no part of this document may be reproduced or distrib-
uted in any form or by any means, or stored in a database
or retrieval system, without the prior written permission
of the Securities Industry Automation Corporation.

4 CRrossTALK The Journal of Defense Software Engincering

trast, a causal analysis of software defects
missed in testing requires testers to have
the latest versions of use cases, test analy-
sis, and test design specifications used in
test execution.

As this case study illustrates, imple-
menting a configuration management
(CM) process provides an effective solu-
tion to this issue. It allows testers to cap-
ture the versions of their artifacts and the
related versions of use cases to produce
configuration baselines that can effective-
ly support the analysis of test process
performance after the project cycle has
ended. In addition, during a project cycle
this kind of CM process provides man-
agement with much better visibility into
and control over the test process. This
article describes how the ASG defined
their CM process and implemented it for
use-case-driven projects with IBM’s
Rational ClearCase tool. However, the
discussed CM process is generic and can
be implemented with any CM tool avail-
able on the market.

Defining the Test Process

Workflows

ASG’s implemented CM process was
intended to support the test process and
make it more efficient and better con-
trolled. Hence, before discussing the CM
process, we need to explain how we
defined the test process. The Rational
Unified Process (RUP) methodology [1]
defines the test process as one of its nine
disciplines. When testers deal with com-
plex use-case models, they can benefit
from further decomposing the RUP’s test
discipline into six separate workflows
shown in Figure 1 and defined in the fol-
lowing paragraphs. As we found on our
projects, such test process decomposition
can help software testers better cope with
functional complexity of software sys-
tems, and it can help management better
control a testing project.

Workflow I:Test Analysis and

Planning

* Purpose: The objectives of this work-
flow are to define the test strategy and
testing objectives for each level of test-
ing, to analyze the use-case model to
determine the testing scope and priot-
ities, to provide test effort estimates, to
allocate project resources, to analyze
quality risks within the context of use-
case scenarios, and to develop test
ideas about what must be tested for
each use case.

* Key Resulting Artifacts: A test proj-
ect plan, system test plan, test
automation plan, test guidelines, and
test analysis specifications.

Workflow 2:Testware Design and

Maintenance

* Purpose: The objectives of this
workflow are to refine test ideas
about what must be tested for each
use case and provide details about
how to execute these tests. Also, this
workflow includes maintenance of
the existing test designs.

* Key Resulting Artifacts: Test analy-
sis, test design, and test case specifica-
tions (and/or test procedure specifi-
cations).

Workflow 3:Test Preparation

* Purpose: The objectives of this work-
flow are to set up a test environment
and a defect tracking system, generate
required test data, and develop test
supporting utilities (if required).

* Key Resulting Artifacts: Require-
ments for the test environment,
guidelines for test data generation and
management, the actual test environ-
ment and test data ready for use, and
test supporting utilities (if required).

Workflow 4:Test Execution and

Reporting

* Purpose: The objectives of this

July 2005

workflow are to execute tests and
evaluate the quality of the software
product, find and report software
defects, and report the product’s test-
ing progress and status.

* Key Resulting Artifacts: Test analy-
sis and test design specifications
(enhanced, for example, with
exploratory test ideas), software defect
reports, test execution logs, and test
execution status repofts.

Workflow 5:Test Process Evaluation

e Purpose: The objectives of this
workflow are to evaluate the test
process completeness, effectiveness,
and efficiency; perform a causal
analysis of 7est escapes'; and provide
recommendations for the test process
improvement.

* Key Resulting Artifacts: A test sum-
mary report, collected test process
and product metrics, and a process
improvement report (that can include
findings of the test escape causal
analysis and post-implementation
review).

Workflow 6: Regression Test

Automation

* Purpose: The objectives of this
wotkflow are to develop the test
automation architecture and automat-
ed regression scripts.

* Key Resulting Artifacts: Test
automation documentation and test
automation software, i.e., automated
regression scripts.

Workflows in the Project Cycle
These six test process workflows can, as
do all other RUP workflows, overlap in
time and iteratively evolve throughout the
project cycle (see Figure 1). For example,
ASG testers ate expected to continue
exploring the software product during
test execution to develop additional test
ideas. Hence, the Test Analysis and
Planning and Testware Design and
Maintenance workflows largely overlap
with the Test Execution and Reporting
workflow for this reason.

We have already mentioned three
types of test documentation used on
ASG projects: test analysis, test design,
and test case specifications. Now, we
need to explain their purposes. The test
analysis specification is developed for
each use case. It provides analysis and
decomposition (slicing) of a given use
case and identifies its quality concerns to
be addressed in testing. The test design
document is also developed for each use
case. It captures a high-level testing logic

July 2005

Implementing Configuration Management for Software Testing Projects

TP
Baseline

TD
Baseline

TE CuU
Baseline Baseline

Test Analysis |
and Planning

Testware Design

|
|
|
|
|
|
|
and Maintenance |

Test Preparation

Test Execution
and Reporting

Test Process

Test Process Workflows

]

Regression Test
Automation |

[
|
|
|
|
|

Evaluation |
|
T
|
|

TP
Milestone

TD

Milestonﬁ

Acronyms for Milestones and Baselines:
TP: Test Planning TD: Test Design
TE: Test Execution

TE PE
Milestone Milestone

PE: Project-End CU: Cumulative

Figure 1: Project Milestones and Related Baselines

and rationale for test case selection for
each of the quality concerns identified in
the corresponding test analysis specifica-
tion. On ASG projects, testers primarily
use the test design specifications for
manual test execution. Lastly, the test
case specifications focus on the how to
execute testing details and are primarily
intended for the test automation person-
nel that use them as functional specifica-
tions for developing automated regres-
sion scripts.

As Figure 1 shows, the Regression
Test Automation workflow spans the
entire testing project. In our case, it is
managed as a separate project with its
own project plan and personnel possess-
ing specialized programming skills. The
artifacts of this workflow, i.e., test
automation documentation and regres-
sion scripts, are also considered a part of
the entire test model, which is a collec-
tion of all testing artifacts [1].

Defining the Configuration

Management Process

According to our CM process, test model
baselines are intended to support the test
process milestones. For this reason, there
is a one-to-one relationship between the
baselines and milestones as Figure 1
shows. This section discusses how we
defined the types of test project mile-
stones and their corresponding baselines.

Test Project Milestones
The term milestone sometimes has differ-
ent meanings on different projects.

According to Webster’s dictionary, mile-
stone is defined as “a significant point in
development.” In the case of ASG, a
project milestone means a significant
point in the test project life cycle where a
test team completes a critical task and
makes an important project decision.

Thus, ASG defined its project milestones

as follows:

* Test Planning (TP) Milestone. The
test team decides that the test project
is feasible and confirms the test proj-
ect plan and schedule. Testers make
this decision based on the completed
test analysis and test effort estimation.

* Test Design (TD) Milestone.
Testers decide that they have com-
pleted their test designs sufficiently
enough to start test execution.

* Test Execution (TE) Milestone.
The test team decides to stop testing.
Testers make this decision based on
evidence that they have met the
defined test exit criteria.

* Project-End (PE) Milestone. The
test team finishes the project cycle
and decides which of the test model
artifacts should be maintained and
reused in future project cycles.

As we already mentioned, the deci-
sions made at project milestones will be
evaluated later as part of the project per-
formance improvement task. Hence,
testers need to capture the versions of
the test model artifacts that supported
each of the project milestones during a
project cycle. An identified and fixed
configuration of these versions is called

www.stsc.hillaf.mil 5

Configuration Management and Test

Test Model Artifacts

TP TD TE
Baseline | Baseline | Baseline

Cu
Baseline

Component 1- Manual Testing Artifacts
Test Plan

X

Test Analysis Specifications
Test Design Specifications

X
X X
X

Test Execution Logs

Test Summary Report

Baseline Status Reports

XXX XX
XX
[

x

Component 2 - Automated Testing Artifacts

Automation Project Plan

Test Case Specifications

Script Design Specifications

Automation Infrastructure Designs

Automated Regression Scripts

Automation Infrastructure Application
Program Interfaces

XX XXX [X

Table 1: Mapping the Test Model Artifacts to Their Baseline Types

baseline, and the next section discusses

how ASG defined the baseline types.

Test Model Baselines

ASG defined the following types of test

model baselines:

* TP Baseline. This baseline supports
the TP milestone. It captures the ver-
sion of a test plan that identifies use
cases in the scope of the testing proj-
ect. Also, it captures the versions of
test analysis specifications that testers
use as a basis for the test effort and
schedule estimation.

* TD Baseline. This baseline supports
the TD milestone. It provides evi-
dence that testers sufficiently com-
pleted test designs and can start test
execution. It captures the versions of
test analysis and test design specifica-
tions that have been completed based
on use cases and other available func-
tional specifications, and that have
been updated based on the peer-
review findings. In addition, this base-
line includes the latest version of a
test plan document.

e TE Baseline. This baseline supports
the TE milestone. It captures infor-
mation about how the system was
tested that testers deem necessary to
support their conclusion about the
software product’s quality. In particu-
lar, it includes the latest versions of
test analysis and test design specifica-
tions® that have evolved during the
manual test execution. In addition, it
includes the test execution logs, both
manual and automated, and a test
summary report.

e Cumulative (CU) Baseline. This

® Capability Maturity Model and CMM are tegistered in the
US. Patent and Trademark Office by Carnegie Mellon
University.

6 CRrosSTALK The Journal of Defense Software Engincering

baseline supports the PE milestone. It
captures test assets intended for
maintenance and reuse in subsequent
project cycles. This baseline has two
components: manual testing artifacts
and automated testing artifacts.
Unlike the other baseline types that
capture artifacts created and used
only in a given project cycle, the CU
baseline captures the cumulative set
of artifacts created both in the cur-
rent project cycle and in previous
cycles’.

Finally, different baseline types can be
composed of different test model arti-
facts. Table 1 shows the mapping
between the test artifacts and their corre-
sponding baseline types established for
the ASG projects.

Implementing the CM

Process

This section discusses the CM process
reference model, which was selected for
the ASG projects, and explains in detail
the CM process implementation.

A CM Process Reference Model
ASG implemented the CM process by
following the practices of the Software
Configuration Management Key Process
Area defined in the Software Engineering
Institute’s Capability Maturity Model®
(CMM®) framework [2]. To better man-
age the CM process implementation, we
further grouped the CMM practices by
four categories that compose the conven-
tional CM discipline [3]:
* Configuration Identification.
* Configuration Control.
* Configuration Status Accounting,
* Configuration Auditing.

The implementation of the CM
process began by producing a general

document for the department that
defined a CM policy, glossary of CM
terms, a standard CM process, and guide-
lines for its implementation. Then, based
on this document, each project team
developed its own CM plan document
that followed the Institute of Electrical
and Electronics Engineers (IEEE)
Std.828-1998 “IEEE Standard for
Software Configuration Management
Plans.”” These CM plans were project-
specific and defined configuration items
and their naming conventions, the CM
repository structure, and the team mem-
ber roles and responsibilities. In particu-
lar, each project assigned the CM manag-
er role to one of the team members.
Finally, in implementing the CM process,
the project teams used the CM plans as a
basis for performing their CM activities.

Configuration Identification

When performing the configuration
identification activities, a project team
decides which test model artifacts must
be under configuration control, what
should be in a team-shared repository,
and how the repository should be struc-
tured. On use-case-driven projects, use-
case models can form complex structures
via the include/extend relationships [4].
In this case, different testers can be
assigned to produce test designs for relat-
ed use cases. Hence, it is important that
team members have quick access in the
course of a project to the latest versions
of each other’s test documentation.
Establishing a common CM repository of
the test model artifacts provides an effec-
tive solution to this issue.

ASG projects created their CM repos-
itories using IBM’s Rational ClearCase
tool. Each repository contained a set of
directories, each storing a particular type
of configuration item. For example, all
test design specifications, created by the
project team, were stored in the same
directory. Table 1 shows the artifacts of
the test model that we included in the
configuration control. As you can see,
they are logically divided into two com-
ponents: manual testing artifacts and
automated testing artifacts that, in turn,
include the automation design documen-
tation and software, i.e., automated
regression scripts.

ASG then defined a naming conven-
tion for all artifacts under configuration
control. Here is a file name example of a
test design specification that illustrates
our naming convention: TDS_DB_9.1
doc. In this example, the file name is
composed of the following parts:

* Artifact type: TDS, meaning the arti-

July 2005

fact type fest design specification.

* Project code: DB, meaning the proj-
ect name Display Book.
¢ Use Case ID number: 9.1.

By our convention, use cases and test
design specifications have a one-to-one
relationship. Hence, by including the use
case number in the test design file name,
ASG established an explicit traceability
from use cases to their corresponding
test designs.

Configuration Control
Performing the configuration control
activities involves controlling change
requests for configuration items, report-
ing and tracking problems, controlling
versions of configuration items, captur-
ing the change history each time a new
version is created, labeling artifacts of a
test model, and creating its baselines
associated with various project mile-
stones. A project manager is the primary
source of change requests. He/she
informs the testers when a new project
cycle begins, when they should start
working on test designs, which new auto-
mated scripts should be created, etc. In
addition, any project team member who
finds a problem with automated scripts
reports it via a defect tracking system.
The version control of test project
artifacts was handled by the CM tool that
allows the creation of new versions of a
given artifact and the capture of its
change history notes, the date/time when
the new version was created, the owner
of this version, and so on. For some of
the artifact types, ASG also created cus-
tom attributes in ClearCase’. For exam-
ple, for the test design specifications we
created attributes to capture the peet-
review date and the total number of test
cases for a given test design. This infor-
mation provided management with better
visibility into the state of evolving test
designs. Also, the number of test cases
was captured as part of the historical
project data for evaluating and improving
the test execution effort estimation.
Creating a test model bascline is a
three-step process. First, the CM manag-
er creates labels that correspond to the
project milestones discussed earlier.
Second, the artifact versions intended for
inclusion in a particular baseline are
labeled to correspond to the requested
baseline. For the TP and TD baselines,
the artifact owner is responsible for label-
ing versions of his/her own work prod-
ucts, as only the owner knows when an
artifact is ready for inclusion in either the
TP or TD baseline. In contrast, applying
labels at the end of test execution (TE

July 2005

Implementing Configuration Management for Software Testing Projects

baseline) or at the end of the entire proj-
ect cycle (CU baseline) can be done for all
required artifacts at the same time.
Hence, in the case of TE and CU base-
lines, the CM manager can be responsible
for labeling the test model artifacts by
simply running a script. Finally, at the
third step the CM manager locks the label
and completes the baseline creation by
producing and publishing a baseline sta-
tus report. Following these steps allows
creating the required baselines and cap-
turing the versions of evolving test
model artifacts at different points in the
project life cycle.

Configuration Status Accounting

The main objective of the ASG status
accounting activities was to verify and
report to a team and its management that a
given baseline is compliant with its comple-

“By following the
defined CM process,
our testing teams
established their
team-shared project
repositories, implemented
effective version control
of their artifacts, and
produced test
model baselines to
support different
project milestones.”’

tion criteria. The CM manager was respon-
sible for this task. First, before creating
each baseline, this task required verifying
that the set of test model artifacts was
compliant with the baseline completion cti-
teria. Second, after a given baseline has
been created, the task required producing
and publishing a baseline status report. As
different test model baselines have differ-
ent purposes and different contents shown
in Table 1, ASG defined the completion
ctriteria for each of them as follows:

TP Baseline

The TP baseline (captures information used
Jor the test effort estimation) requires the fol-
lowing:

* A test plan has been reviewed and its
current version has been labeled.

* All required test analysis specifica-
tions exist in the CM repository.

* The latest versions of test analysis
specifications, used for the test effort
estimation, have been labeled and
refer to the corresponding use-case
document versions.

* A baseline status report has been cre-

ated and labeled.

TD Baseline

The TD baseline (captures test designs to be

used for test execution) requires the following:

* The latest version of the test plan
document has been labeled.

* All required test analysis and test
design specifications have been com-
pleted and peer-reviewed.

* The latest versions of test analysis

and test design specifications, ready

for test execution, have been labeled.

All labeled versions of test analysis

and test design specifications refer to

the corresponding use-case versions.

* All labeled test design specifications
capture the peer-review date and the
total number of test cases.

* A baseline status report has been cre-

ated and labeled.

TE Baseline

The TE baseline (captures test artifacts actu-

ally used for test execution) requires the fol-

lowing:

* The latest version of the test plan
document has been labeled.

* The latest versions of test analysis
and test design specifications, actually
used for test execution, have been
labeled.

* All labeled versions of test analysis
and test design specifications refer to
the corresponding use-case vetsions.

* All labeled test design specifications
capture the total number of test cases
(that may have increased during test
execution).

* The test execution logs (manual and
automated) exist in the CM reposito-
ry and their latest versions have been
labeled.

* The test summary report exists in the
CM repository and its latest version
has been labeled.

* A baseline status report has been cre-

ated and labeled.

CU Baseline
The CU baseline (captures test artifacts
intended for reuse and maintenance) requires
the following:
* The latest versions of all selected test

www.stsc.hillaf.mil 7

Configuration Management and Test

analysis specifications have been
labeled.

e The latest versions of all selected test
design specifications have been
labeled.

¢ The latest version of the test automa-
tion plan has been labeled.

e The latest versions of all selected test
case specifications have been labeled.

e The latest versions of test automation
documentation have been labeled.

e The latest versions of automated
scripts that have been accepted for
production have been labeled.

* Each accepted automated script cap-
tures the date it was accepted for pro-
duction and the name of a team
member who tested and accepted the
script.

* A baseline status report has been cre-
ated and labeled.

Configuration Auditing

Baseline auditing was an important part
of our CM process. Especially in the
beginning of the process implementation
a risk existed that some team members,
because of their lack of experience,
might not follow the process exactly as
defined. To ensure that the CM process is
properly followed, the ASG department
established a quality assurance (QA)
function. The QA personnel oversaw all
of the process improvement tasks in the
department, including the CM process
implementation and project baseline
audits.

Each testing project plan included
baseline audit tasks and assigned a QA
auditor as a project resource responsible
for the task. By having access to each
project team’s configuration repository,
the auditor could verify that each created
baseline was compliant with its defined
completion criteria. In addition, the audi-
tor was monitoring each project team’s
CM activities during a project cycle.
Thus, any deviations from the process
then could be identified and corrected
earlier in the project. The audit findings
were reported to project teams and dis-
cussed at their status meetings. Also, the
audit summary report was periodically
submitted to and reviewed by the depart-
ment head.

CM Process Implementation

Challenges
As is the case with any software process
improvement implementation, while

implementing our new CM process we
experienced a few challenges. These chal-
lenges can be described from two per-

8 CRrRosSTALK The Journal of Defense Software Engincering

spectives: (1) a general process improve-
ment perspective, and (2) a CM process-
specific perspective.

From the general process improve-
ment perspective, the success of any new
process implementation depends not
only on a good definition of the process
activities and procedures, but also on a
number of other (process supporting)
critical factors. Among them, the most
important are establishing process own-
ership and leadership, allocating neces-
sary resources, personnel training, man-
agement reviews, and process auditing;
Because of this dependency, we found
that the practices defined in the CMM as
the following common features [2] — cor-
mitment to perform, ability to perform, measure-
ment and analysis, and verifying implementation
— are all equally important for successful
process implementation as the practices
in the main CMM category — activities to
perform.

From the CM process-specific pet-
spective, before a project team starts
implementing a new CM process, it
should decide how to handle legacy test
model artifacts when moving them into
the new CM repository and creating an
initial project baseline. Likely, these arti-
facts will not be in compliance with the
defined CM process requirements. For
example, old test designs might not have
their peer review dates and/or references
to their corresponding use-case versions.
Likewise, old automated scripts might
not have their acceptance dates, etc.
Hence, a newly created baseline might
not satisfy its completion criteria when it
includes the legacy configuration items.

One way to resolve this issue is to
establish a convention defining how the
missing metadata can be substituted
while moving the legacy artifacts to the
new CM repository. This way a status
report — used to determine the baseline’s
completion — will not have blank values
for the metadata pertinent to the legacy
configuration items.

Conclusion

This case study discussed our experience
with implementing the CM process for
highly critical software testing projects. An
important management objective on our
projects is to establish a framework for (a)
effective control of testing projects, and
(b) continuous analysis and improvement
of test process performance. As we illus-
trated in this article, implementing the CM
process allows software testers to better
achieve this management objective. By fol-
lowing the defined CM process, our testing
teams established their team-shared proj-

ect repositories, implemented effective
version control of their artifacts, and pro-
duced test model baselines to support dif-
ferent project milestones. These baselines
captured configurations of versions of the
testing artifacts and their related use cases
that could later support the testers’ analy-
sis and improvement of test process pet-
formance. Finally, the discussed CM
process is generic and can be implemented
with any available CM tool. ¢

References

1. Kroll, P, and P. Kruchten. The
Rational Unified Process Made Easy:
A Practitioner’s Guide to the Rational
Unified Process. Addison-Wesley
Professional, 2003.

2. Paulk, M., et al. The Capability
Maturity Model: Guidelines for
Improving the Software Process.
Addison-Wesley Professional, 1995.

3. Ben-Menachen, M. Software Config-
uration Management Guidebook.
McGraw-Hill Book Company, 1994.

4. Bittner, K., and I. Spence. Use Case
Modeling. Addison-Wesley, 2003.

Notes

1. From a system test perspective, zest
escape is a software defect missed in
system testing and found in a later
stage, for example, during independ-
ent quality assurance testing or in pro-
duction.

2. Capturing the versions of test designs
at this point is critical to supporting at
a later time the causal analysis of test
escapes, especially those found in pro-
duction.

3. Regression Test Automation work-
flow can have its own intermediate
baselines; however, the versions of
these workflow deliverables must be
synchronized with other test model
artifacts at the end of a project cycle
(in the CU baseline)

4. This ClearCase feature — adding cus-
tom attributes to configuration items
— may not be available in some com-
mercial CM tools.

Acknowledgements
The authors are grateful to the
CROSSTALK reviewers and Robin

Goldsmith at GoPro Management for
their feedback and comments that helped
us improve this article. Our special thanks
to the ASG testers who have implemented
and followed the CM process discussed in
this article, and helped us refine the
process and make it effective.

July 2005

Implementing Configuration Management for Software Testing Projects

About the Authors

Steve Boycan is man-
aging director for
Process Improvement
and Software Engineer-
ing and Testing Sup-
port at Securities In-

dustry Automation Corporation where
he manages the process improvement
program and various testing activities
for critical New York Stock Exchange
trading systems. He has been leading
softwatre process improvement efforts
in the military, telecommunications,
and financial sectors for the last 10
years. As a certified Capability Maturity
Model® (CMM?®) Lead Assessor, he has
performed a number of CMM-based
assessments and provided process
improvement guidance for various
information technology otrganizations.

Securities Industry Automation
Corporation

2 MetroTech CTR

Brooklyn, NY 11201

Phone: (212) 383-2963

Fax: (718) 923-6068

E-mail: sboycan@siac.com

Yuri Chernak, Ph.D.,
is the president and
principal consultant of
_ Valley Forge Consult-
\' ing, Inc. As a consult-

al ant, Chernak has work-
ed for a number of major financial
firms in New York helping senior man-
agement improve their software testing
process. Currently, his research inter-
ests focus on use-case-driven testing
and test process assessment and
improvement. Chernak is a member of
the Institute of Electrical and Elec-
tronics Engineers (IEEE) Computer
Society. He has been a speaker at sever-
al international conferences and has
published papers on software testing in
the IEEE publications and other pro-
fessional journals. Chernak has a doc-
torate in computer science.

Valley Forge Consulting, Inc.
233 Cambridge Oaks ST
Park Ridge, NJ 07656

Phone: (201) 307-4802

Fax: (201) 307-4803

E-mail: ychernak@yahoo.com

CALL FOR ARTICLES

If your experience or research has produced information that could be useful
to others, CROSSTALK can get the word out. We are specifically looking for
articles on software-related topics to supplement upcoming theme issues.
Below is the submittal schedule for three areas of emphasis we are looking for:

Total Creation of a Software Project

December 2005
Submission Deadline: July 18

Communications
January 2006
Submission Deadline: August 22

What Is Up and Coming?
February 2006
Submission Deadline: September 19

Please follow the Author Guidelines for CROSSTALK, available on the
Internet at <www.stsc.hill.af.mil/crosstalk>. We accept article submissions on all
software-related topics at any time, along with Letters to the Editor and BackTalk.

COMING EVENTS

August 15-17
International Conférence on Information
Reuse and Integration: Knowledge
Acquisition and Management
Las Vegas, NV
www.cs.fiu.edu/IRI05

August 16-18
ICSEng 05 International Conference on
Systems Engineering
Las Vegas, NV
www.icseng.info

August 22-26
Association for Computing Machinery
SIGCOMM 2005
Philadelphia, PA

www.acm.org/sigs/sigcomm/
sisccomm?2005/index.html

September 12-16
Practical Software Quality and
Testing Conference 2005 North

Minneapolis, MN
www.psqtconference.com/
2005north

September 18-23
International Function Point Users
Group 1" Annual International Software
Measurement and Analysis Conference
New Orleans, LA
www.ifpug.org/conferences/
annual.htm

September 19-22
Better Software Conference
and Expo 2005
San Francisco, CA
www.sqe.com/bettersoftwareconf

September 26-27
PDF Conference and Expo
Washington, DC
www.pdfconference.com

May 1-4,2006
2006 Systems and Software
Technology Conference

e

'yetems & Software
Technology Conference

Salt Lake City, UT
www.stc-online.org

July 2005

www.stsc.hillaf.mil 9

